Junwu Tu, University of Missouri-Columbia

December 1, 2017 - 4:00pm to 5:00pm

Cupples I, room 6

*Abstract: Classical mirror symmetry relates Gromov-Witten invariants in symplectic geometry to Yukawa coupling invariants in algebraic geometry. Through non-commutative Hodge theory, one can define categorical Gromov-Witten invariants associated to (Calabi-Yau A-infinity) categories. Conjecturally, this construction should reproduce the Gromov-Witten invariants and Yukawa coupling invariants, when applied Fukaya categories and Derived categories, respectively. In this talk, I describe a first computation of categorical Gromov-Witten invariants at positive genus. This is a joint work with Andrei Caldararu.*

*Host: Xiang Tang*