Gregory Knese, Washington University in Saint Louis

April 16, 2018 - 4:00pm to 5:00pm

Cupples I, Room 199

*Abstract: A classical inequality of Szász bounds polynomials with no zeros in the upper half plane entirely in terms of their first few coefficients. Borcea-Brändén generalized this result to several variables as a piece of their characterization of linear maps on polynomials preserving stability. In this talk, we improve Sz\'asz's original inequality, use determinantal representations to prove Szász type inequalities in two variables, and then prove that one can use the two variable inequality to prove an inequality for several variables.*

*Host: John McCarthy*