This exam has 20 multiple choice questions worth 5 points each. Fill in your answer card as described on the cover page of this exam. You are NOT allowed a calculator or note card of any kind on this test.

Good Luck.

1. The period of $\sin(\pi t/3)$ is:

 (A) π (B) 2π (C) 6 (D) $\pi/3$ (E) 3 (F) $2\pi/3$ (G) none of these

For Problems 2-5, let $f(t) = 1 + \frac{\cos(\pi t)}{2} + \frac{\cos(2\pi t)}{4} + \frac{\cos(3\pi t)}{8} + \frac{\cos(4\pi t)}{16} + ...$

2. The minimal period of f is:

 (A) π
 (B) 2π
 (C) 4π
 (D) 1
 (E) 2
 (F) $\pi/2$
 (G) 4
 (H) $1/\pi^2$

3. f is: (A) Even (B) Odd (C) Neither (D) Both (E) Impossible to tell if it is even or odd.
4. Let \(x_p \) be a periodic solution of \(x'' + (\omega_n)^2 x = f(t) \). For which \(\omega_n \) is the amplitude of the \(\cos(\pi t) \) term in the Fourier Series of the solution the greatest?

(A) 1
(B) 2
(C) 3
(D) 4
(E) 9
(F) 16
(G) None of the above

5. The differential equation in problem 3 above does not have a periodic solutions if \(\omega_n = ? \)

(A) only \(\pi \) (that is, it has periodic solutions for any other value of \(\omega_n \))
(B) 1
(C) only \(\pi/4 \) (that is, it has periodic solutions for any other value of \(\omega_n \))
(D) 1/2
(E) 2
(F) either \(\pi/2 \) or \(3\pi \) (among other numbers, and not exclusive or)
(G) either 1 or 2 (among other numbers, and not exclusive or)
6. Let f be the periodizaton (of period 2π) of the function that is -1 on the interval $[-\pi, 0)$ and 1 on the interval $(0, \pi)$. Which of the following statements best describes the Fourier series of f? (Make sure to choose the one that conveys the most amount of information about the Fourier coefficients of f.)

(A) $a_k = 0$ for all $0 \leq k$
(B) $a_k = 0$ for all $0 < k$
(C) $b_k = 0$ for all $0 \leq k$
(D) $b_k = 0$ for all positive even k
(E) $b_k = 0$ for all positive odd k
(F) $a_k = 0$ for all positive even k and $b_k = 0$ for all positive odd k.
(G) $b_k = 0$ for all $0 \leq k$ and $a_k = 0$ for all positive even k
(H) $b_k = 0$ for all $0 \leq k$ and $a_k = 0$ for all positive odd k
(I) $a_k = 0$ for all $0 \leq k$ and $b_k = 0$ positive even k
(J) $a_k = 0$ for all $0 \leq k$ and $b_k = 0$ positive odd k
7. Let \(f(t) = 3 \cos t \). Below is the graph of a function \(g(t) \).

Which of the following functions is \(g(t) \)?

(A) \(u(t)f(t) \)
(B) \(u(t+2)f(t+2) \)
(C) \(u(t-2)f(t+2) \)
(D) \(u(t+2)f(t-2) \)
(E) \(u(t-2)f(t-2) \)
(F) \(u(t)f(3t) \)
(G) \(u(t+2)f(3t+2) \)
(H) \(u(t-2)f(3t+2) \)
(I) \(u(t+2)f(3t-2) \)
(J) \(u(t-2)f(3t-2) \)
(K) None of the above
8. Suppose \(f(t) = 1 \) when \(t \geq 1 \) and when \(t < 1 \), \(f(t) \) is defined in each of the following ways:

i. \(f(t) = t \)

ii. \(f(t) = 2t \)

iii. \(f(t) = \frac{1}{t-1} \)

Which of the resulting functions is regular on the interval \([0,2]\)?

(A) i

(B) ii

(C) iii

(D) i and ii

(E) i and iii

(F) ii and iii

(G) i and ii and iii

(H) None of them
9. Let \(f(t) = \sin 3t \) and \(g(t) = 1 \). Find the convolution product \((f \ast g)(t)\).

(A) \(t \)
(B) \(-t \)
(C) \(\frac{1}{3} \cos(3t) \)
(D) \(-\frac{1}{3} \cos(3t) \)
(E) \(\frac{1}{3} (1 - \cos(3t)) \)
(F) \(-\frac{1}{3} (1 - \cos(3t)) \)
(G) \(\cos(3t) \)
(H) \(\frac{1}{3} \sin(3t) \)
(I) None of the above
On the next two problems let: \(f(t) = 0 \) for \(t < 0 \), \(f(t) = 3t - 1 \) for \(0 < t < 1 \), \(f(t) = 0 \) for \(t > 1 \).

10. \(f(t) = \)

 (A) \(u(t) - u(t - 1) \)

 (B) \(u(t) - u(t - 1) \)(3t)

 (C) \(u(t)(3t - 1) \)

 (D) \(u(t) - u(t - 1) \)(3t - 1)

 (E) \(u(t) - u(t - 1) \)(t)

 (F) \(u(t) - u(t - 1) \)(3t - 1) + \(\delta(t) \)

 (G) \(u(t) - u(t - 1) \)(3t - 1) + \(\delta(t) + \delta(t - 1) \)

 (H) \(u(t) - u(t - 1) \)(3t - 1)\(\delta(t) \)

11. \(f'(t) = \)

 (A) \(3(u(t) - u(t - 1)) - \delta(t) + \delta(t - 1) \)

 (B) \(3(u(t) - u(t - 1)) \)

 (C) \(u(t) - u(t - 1) \) - \(\delta(t) - 2\delta(t - 1) \)

 (D) \(3(u(t) - u(t - 1)) - \delta(t) - 2\delta(t - 1) \)

 (E) \(\delta(t) - \delta(t - 1) \)

 (F) \(\delta(t) + \delta(t - 1) \)

 (G) \(\delta(t) - 3\delta(t - 1) \)

 (H) \(3(u(t) - u(t - 1)) - \delta(t) + 2\delta(t - 1) \)
12. What is the unit impulse response for the LTI operator $2D^2 + 4D + 4I$?

(A) $\frac{1}{2} u(t)e^{-t}\cos t$
(B) $\frac{1}{2} e^{-t}\sin t$
(C) $\frac{1}{2} u(t)e^{t}\sin t$
(D) $u(t)e^{-t}\sin t$
(E) $u(t)e^{-t}\cos t$
(F) $\frac{1}{2} u(t)e^{-t}\sin t$
(G) $\frac{1}{2} \delta(t)e^{-t}\sin t$
(H) $\frac{1}{2} u(t)e^{-t}\sin \omega$
13. What is the unit step response for the operator in problem 12 above?

(A) \(\frac{1}{4} u(t)(1 - e^{-t}(cost + sint)) \)

(B) \(u(t)(1 - e^{-t}(cost + sint)) \)

(C) \((1 - e^{-t}(cost + sint)) \)

(D) \(\frac{1}{4} u(t)(1 - (cost + sint)) \)

(E) \(\frac{1}{4} u(t)(1 - e^{-t}sint) \)

(F) \(\frac{1}{4} u(t)(1 - e^{-t}cost) \)

(G) \(\frac{1}{2} u(t)(1 - e^{-t}(cost + sint)) \)
14. Let \(p(D) \) be the operator whose unit impulse response is given by \(w(t) = e^{-t} \). Which of the following gives the solution to \(p(D) = u(t) \) with rest initial conditions. (\(u(t) \) is the unit step function.)

(A) \(\int_0^t e^{-\tau - \xi} \, d\tau \)

(B) \(\int_0^\infty e^{\xi - \tau} \, d\tau \)

(C) \(e^{-\xi} \)

(D) \(\int_0^\infty e^{-\xi} \, d\tau \)

(E) \(\int_0^\infty e^{-\xi} \, d\tau \)

(F) \(\int_0^\infty e^{-\xi} \, d\tau \)

(G) \(e^{-\xi + \xi} \)

(H) None of the above
15. Find \(L^{-1}\left\{\frac{1}{s(\sqrt{s^2 + 1})}\right\} \).

A) \(t^2 - t \)

B) \(t - t^2 \)

C) \(1 - \frac{t^2}{4} + \frac{t^4}{64} \)

D) \(1 - \frac{t^2}{4} \)

E) \(\cos t \)

F) \(\cos(\ln t) \)

G) \(1 - \cos t \)

H) \(\frac{1}{3} e^{-t} \sin 3t \)

I) \(\frac{1}{3} e^{-t} \cos 3t \)

J) None of the above
16. Find \(L^{-1} \left\{ \frac{1}{s^2 + 2s + 10} \right\} \).

A) \(t^2 - t \)

B) \(t - t^3 \)

C) \(1 - \frac{t^2}{4} + \frac{t^4}{64} \)

D) \(1 - \frac{t^2}{4} \)

E) \(\cos t \)

F) \(\cos(\ln t) \)

G) \(1 - \cos t \)

H) \(\frac{1}{3} e^{-t} \sin 3t \)

I) \(\frac{1}{3} e^{-t} \cos 3t \)

J) None of the above
17. Suppose \(f(t) \) has the properties: \(f(0) = 0, \ f'(0) = 0 \), and the Laplace transform

\[
L\{f(t)\} = \frac{1}{s^2 + s + 1}.
\]

Find \(L\{f''(t)\} \).

A) \(\frac{3}{s^2 + s + 1} \)

B) \(\frac{s^2}{s^2 + s + 1} \)

C) \(\frac{3}{(s^2 + 2s^2 + 9)} \)

D) \(\frac{s}{(s^2 + 3s^2 + 9)} \)

E) \(\frac{e^{-s}}{s^3} \)

F) \(\frac{6e^{-s}}{s^4} \)

G) \(\frac{1}{s} \)

H) \(\frac{1 - e^{-s}}{s^2 (s^2 + 1)} \)

I) \(\frac{e^{-s}}{s^2 (s^2 + 1)} \)

J) None of the above
18. Use the Laplace transform to turn the initial value problem into an algebraic equation in $X(s)$.

$$x'' + 8x' + 15x = e^t \quad x(0) = 1, x'(0) = 2$$

(a) $(s^2 + 8s)X(s) = \frac{1}{s - 1} - 15$

(b) $X(s) = (s^2 + 8s + 15)(\frac{1}{s - 1} + 2s + 9)$

(c) $(X(s) + 3)(X(s) + 5) = \frac{1}{s - 1}$

(d) $s^2 + 8s + 15X(s) = \frac{1}{s - 1}$

(e) $(s^2 + 8s + 15)X(s) = s + 10$

(f) $(s^2 + 8s + 15)X(s) = 2s + 9$

(g) $(s^2 + 8s + 15)X(s) = 2s + 9 + \frac{1}{s - 1}$

(h) $(s^2 + 8s + 15)X(s) = \frac{1}{s - 1} + s + 10$

(i) $(s^2 + 8s + 15)X(s) = \frac{1}{s - 1}$

(j) $(s^2 + 8s + 15)X(s) = \frac{1}{s + 1}$

(k) None of the above
19. Use the Laplace transform to turn the initial value problem into an algebraic equation in \(X(s) \).
Solve for \(X(s) \).
\[
2x'' - 5x' - 12x = \cos t \quad x(0) = x'(0) = 0
\]

Find the Laplace transform of the solution.

(a) \(X(s) = \frac{s}{s^2 + 1} \)

(b) \(X(s) = \frac{s}{(s^2 + 1)(s - 4)(2s + 3)} \)

(c) \(X(s) = \frac{1}{(s^2 + 1)(s - 4)(2s + 3)} \)

(d) \(X(s) = \frac{s - 1}{(s - 4)(2s + 3)} \)

(e) \(X(s) = \frac{1}{s^2 + 1} \)

(f) \(X(s) = \frac{(s - 4)(2s + 3)}{s^2 + 1} \)

(g) \(X(s) = \frac{1}{(s - 4)(2s + 3)} \)

(h) \(X(s) = \frac{s}{(s - 4)(2s + 3)} \)

(i) \(X(s) = \frac{s(s - 4)(2s + 3)}{s^2 + 1} \)

(j) None of the above
20. Let \(y(t) \) be the solution of the I.V.P. \(y'' + 2y = \sin 3t, \ y(0) = y'(0) = 0. \) Find
\(Y(s) = L[y(t)]. \)

A) \(\frac{3}{s^3 + s + 1} \)

B) \(\frac{s^2}{s^3 + s + 1} \)

C) \(\frac{3}{(s^2 + 2)(s^2 + 9)} \)

D) \(\frac{s}{(s^2 + 3)(s^2 + 9)} \)

E) \(\frac{e^{-s}}{s^3} \)

F) \(\frac{6e^{-s}}{s^3} \)

G) \(\frac{1}{s} \)

H) \(\frac{1 - e^{-s}}{s^2(s^2 + 1)} \)

I) \(\frac{e^{-s}}{s^2(s^2 + 1)} \)

J) None of the above